Benchmarking tools for the alignment of functional

noncoding DNA.

Daniel A. Pollard (dpollard@socrates.berkeley.edu) !, Casey M. Bergman
(cbergman@gen.cam.ac.uk) >>*", Jens Stoye (stoye@techfak.uni-bielefeld.de) 4, Susan

E. Celniker (celniker@fruitfly.org) %3, and Michael B. Eisen (mbeisen@Ibl.gov) %°

! Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA

2 Department of Genome Science, Life Science Division, Lawrence Orlando Berkeley
National Laboratory, Berkeley, CA 94720, USA

3 Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory,
Berkeley, CA 94720, USA

* Technische Fakultét, Universitét Bielefeld, 33594 Bielefeld, Germany

® Department of Molecular and Cell Biology, University of California, Berkeley, CA
94720, USA

* Current address. Department of Genetics, University of Cambridge, Cambridge, UK

CB2 3EH

" corresponding author.



Abstract

Background

Numerous tools have been devel oped to align genomic sequences. However, their
relative performance in specific applications remains poorly characterized. Alignments
of protein-coding sequences typically have been benchmarked against “ correct”
alignmentsinferred from structural data. For noncoding sequences, where such
independent validation is lacking, simulation provides an effective means to generate

“correct” alignments with which to benchmark alignment tools.

Results

Using rates of noncoding sequence evolution estimated from the genus Drosophila, we
simulated alignments over arange of divergence times under varying models
incorporating point substitution, insertion/del etion events, and short blocks of constrained
sequences such as those found in cis-regulatory regions. We then compared “ correct”
alignments generated by a modified version of the ROSE simulation platform to
alignments of the simulated derived sequences produced by eight pairwise alignment
tools (Avi d, Bl ast Z, Chaos, T ust al WDi Al i gn, Lagan, NeedlI e, and WABA)
to determine the off-the-shelf performance of each tool. As expected, the ability to align
noncoding sequences accurately decreases with increasing divergence for all tools, and
declines faster in the presence of insertion/deletion evolution. Global alignmentstools
(Avi d, d ust al WLagan, and Needl e) typically have higher sensitivity over entire
noncoding sequences as well asin constrained sequences. Local tools (Bl ast Z,
Chaos, and WABA) have lower overall sensitivity as a consequence of incomplete

coverage, but have high specificity to detect constrained sequences as well as high



sensitivity within the subset of sequencesthey align. ToolssuchasDi Al i gn, which
generate both local and global outputs, produce alignments of constrained sequences with
both high sensitivity and specificity for divergence distances in the range of 1.25-3.0

substitutions per site.

Conclusion

For species with genomic properties similar to Drosophila, we conclude that asingle pair
of optimally diverged species analyzed with a high performance alignment tool can yield
accurate and specific alignments of functionally constrained noncoding sequences.
Further algorithm development, optimization of alignment parameters, and benchmarking
studies will be necessary to extract the maximal biological information from alignments

of functional noncoding DNA.



Background

The increasing availability of genome sequences of related organisms offers myriad
opportunities to address questions in gene function, genome organization and evolution,
but also presents new challenges for sequence analysis. Many classical tools for
sequence analysis are obsolete, and there has been active effort in recent years to develop
tools that work efficiently with whole genome data. Aligning long genomic sequences —
the first step in many analyses — is substantially more complex and computational taxing
than aligning short sequences, and many methods have been developed in recent years to
address this challenge (reviewed in [1, 2]). Nevertheless, comparative genomic
researchers are still faced with the task of making decisions such as which alignment
tools to use and which genomes to compare for their particular application.
Benchmarking studies that address both the selection of alignment methods and the
choice of species can provide the needed framework for informed application of genomic

alignment tools and biological discovery in thefield of comparative genomics.

Research in alignment benchmarking has focused on the alignment of protein-coding
sequences [ 3, 4], where independent evidence (either the three-dimensional structure of a
protein sequence [5, 6] or cDNA sequence [7, 8]) isavailable to use as a“gold standard”
to assess the relative performance of different alignment tools. In contrast, little is known
about the relative performance of tools to align noncoding sequences, which comprise the
vast mgjority of metazoan genomes and contain many functional sequences including cis-
regulatory elements that control gene regulation. For noncoding sequences, little externa

evidence is available to evaluate alignment tool performance. Benchmarking, however,



can be achieved by simulating sequence divergence in silico where it is possible to
generate sequences that are related by a known, “correct” alignment [9]. Simulation
experiments have been used extensively to assess the performance of different methods
for phylogenetic reconstruction [10]. Yet only afew studies to date have exploited
simulated data to benchmark alignment tools[11-18], and currently none have done so

explicitly for the purposes of functional noncoding sequence alignment.

Here we present results of a simulation-based benchmarking study designed to assess the
performance of eight tools (Avi d, Bl ast Z, Chaos, Cl ustal WDi Al i gn, Lagan,
Needl e, and WABA) for the pairwise alignment of noncoding sequences. We have
chosen to address the question of pairwise alignment since pairwise alignment methods
often are used in the construction of multiple aignments, since the evaluation of pairwise
alignment performance is more tractable than that of multiple alignment, and since
pairwise alignment performance is an important part of a general assessment of
noncoding alignment strategies. We have chosen to model noncoding sequence evolution
in the genus Drosophila as a biological system for methodological evaluation, because of
the high quality sequence and annotations available for D. melanogaster [19, 20], and the
recent availability of the genome sequence for the related species, D. pseudoobscura
[21]. Inaddition, because of the high rate of deletion as well asthe relatively low density
of repetitive DNA as compared with mammalian genomes [22-24], Drosophila
noncoding regions are likely to be enriched for sequences under functional constraint.
Previous results indicate that Drosophila noncoding regions contain an abundance of

short blocks of highly conserved sequences, but that the detection of these sequencesis



dependent on the alignment method used [25]. Optimizing strategies for the accurate
identification of functionally constrained noncoding sequences will play acritical rolein
the annotation of cis-regulatory elements and other important noncoding sequences in

Drosophila as well as other metazoan genomes.

In this study, we use empirically-derived estimates to parameterize simulations of
noncoding sequence evolution over arange of divergences that includes those between
species commonly used in comparative genomics such as H. sapiens-M. musculus [ 26,
27], C. elegans-C. briggsae [ 28, 29] and D. melanogaster-D. pseudoobscura [30, 31].
Alignments of simulated descendent sequences produced by the tools under consideration
were compared to correct alignments and various performance measures were cal cul ated.
In general, we find that global tools (Avi d, C ust al WDi Al i gn- G Lagan, and
Needl e), which aign the entirety of input sequences, tend to have the highest accuracy
over entire sequences as well as within interspersed blocks of constrained sequences, but
both measures were decreasing functions of divergence. Local tools (Bl ast Z, Chaos,
D Al'i gn- L, and WABA), which align subsets of input sequences, tend to have the
highest accuracy for the portion of the sequences they align, but the proportion of
sequences included in their alignments decreased quickly with increasing divergence
distance. For intermediate to high divergences, local tools also showed a high specificity
for only aligning interspersed blocks of constrained sequences. Despite these genera
trends, we find that some tools can systematically out-perform others over awide range
of divergence distances. These results should prove useful for comparative genomics

researchers and algorithm developers alike.



Results

Properties of noncoding DNA in Drosophila

To make our simulation results as biologically meaningful as possible, we estimated
properties of noncoding regionsin D. melanogaster using Release 3 euchromatic genome
sequences and annotations [19, 20]. As described in the methods, we masked all
annotated coding exons and known transposable elements to derive a data set of unique
sequences representative of noncoding regionsin the D. melanogaster genome. Intotal,
we obtained 55,325 noncoding regions ranging in size from 1 to 156,299 bp with two
modes at approximately 70 and 500 bp (Figure 1). Greater than 95% of noncoding
sequencesin the D. melanogaster genome are less than 10 Kb in length, thus 10 Kb was
used as the sequence length for our ssmulations. Nucleotide frequencies derived from
this set of noncoding regions were used to parameterize both our model of noncoding

DNA aswell as our substitution model used in our simulations.

Estimates of divergence between taxa used in comparative genomics

To link our simulations to species commonly used in comparative genomic analyses of
noncoding DNA, we estimated silent site divergence (Ks) between H. sapiensvs. M.
musculus, C. elegansvs. C. briggsae, and D. melanogaster vs. D. pseudoobscura (see
methods). Since estimates of K¢ are highly dependent on methodol ogy, we sought to
generate estimates between these three species pairs using asingle method. We estimate

the mean (and median) of Ks measured in expected number of substitutions per silent site,



for these species pairsto be: H. sapiensvs. M. musculus 0.64 (0.56); C. elegansvs. C.
briggsae, 1.39 (1.26); and D. melanogaster vs. D. pseudoobscura, 2.40 (2.24). We note
that these divergence estimates do not underlie our simulation, but rather are intended to

frame the interpretation of our simulation resultsin abiological context.

Simulating noncoding sequence evolution

Using amodel of noncoding DNA, parameterized with D. melanogaster nucleotide
frequencies (see Methods for details), we generated 10 Kb sequences which were used as
“ancestral” inputs to the ROSE sequence evolution simulation program [9, 32] to create
pairs of “derived” output sequences. It isimportant to note that ROSE provides both
pairs of derived sequences and their correct aignment, and that the modifications to
ROSE implemented here allow ancestral constraints to be mapped onto derived
sequences. Sequence evolution in ROSE occurred under four simulation regimes: A)
without insertion/deletion (indel) evolution and without constrained blocks; B) with indel
evolution and without constrained blocks,; C) without indel evolution and with
constrained blocks; and D) with indel evolution and with constrained blocks. Regime D
isthe most realistic and relevant for the interpretation of real biological data. Other
regimes were used to calibrate the outputs of our simulations and address the effects of
different models of evolution on noncoding sequence alignment. Under each regime,
1,000 replicate pairs of sequences were evolved to each of eleven divergence distances
ranging from 0.25 to 5.0 substitutions per site. Levelsof constraint aswell asrelative

evolutionary rates of constrained to unconstrained sites and of indels to point substitution



were chosen based on previously reported estimates from the literature (see Table 1 and

Methods).

Characterization of simulation outputs

To characterize simulation outputs, derived pairs of sequencesin alignments provided by
ROSE were analyzed for the following measures. estimated overall divergence, estimated
divergence in constrained blocks, estimated divergence in unconstrained blocks, overall
identity, identity in constrained blocks, identity in unconstrained blocks, fraction of
ancestral sequence remaining, fraction of sequences constrained, and differencesin
length. These simulation statistics are summarized in Figure 2 and demonstrate that the
expected outputs of our simulations are observed. In the absence of constrained blocks,
estimated overall divergences correspond well with the input distance parameters up to
3.0-4.0 substitutions per site (Figure 2A and 2B, black boxes). In the presence of
constrained blocks, estimated overall divergences (Figure 2C and 2D, black boxes) are
less than the input distance parameters because these sequences are made up of both
unconstrained sites evolving at the rate set by the input parameter (Figure 2C and 2D,
brown triangles) as well as blocks of constrained sites evolving ten times more slowly
(Figure 2C and 2D, grey circles). The more pronounced deviation of the estimated
overall divergences from the input distance parameters in the regime with indel evolution
(Figure 2C vs. 2D) is due to preferential deletion of sequence under no constraint which

enriches for constrained sites and leads to a decrease in estimated divergences.



Overall identity between derived pairs in the regimes without constrained blocks
decreases to the random background of 0.26 (the sum of the squares of the

mononucl eotide frequencies) by 5.0 substitutions per site with and without indel
evolution (Figure 2A and 2B, red crosses). In the regimes with constrained blocks,
unconstrained sites have the same level of identity as entire sequences in the regimes
without constrained blocks (Figure 2C and 2D, green diamonds), whereas the identity in
the constrained blocks is much greater (Figure 2C and 2D, yellow x’s). In the regimes
with indel evolution, the fraction of the ancestral sequence remaining diminishes most
quickly in the absence of constrained blocks (Figure 2B, green triangles). InregimeC
(with constrained blocks and without indel evolution), the fraction of constrained sitesin
derived sequences matches the input parameter of 0.2 (Figure 2C, blue checked-boxes).
However, in regime D (with constrained blocks and indel evolution), the fraction of
constrained sites in derived sequences decreases below the input parameter of 0.2 at large
divergence distances (Figure 2D, blue checked-boxes). Thisis because the derived
sequences are on average longer than ancestral sequences in regime D, differing by 300-
400 bp at 1 substitution per site, 400-500 bp at 2 substitutions per site and 700-800 bp at
5 substitutions per site. In our simulation there are equal input rates of insertion and
deletion, however deletions are unabl e to extend into constrained blocks and are omitted,
creating a net excess of insertions to deletions. This phenomenon was recently proposed
as a possible explanation for differences in observed insertion:deletion ratiosin
unconstrained dead-on-arrival retrotransposon pseudogenes versus noncoding sequences

flanking genes [33].



Comparative analysis of genomic alignment tools

Unaligned pairs of derived sequences generated by ROSE were used as input to each of
the eilght genomic alignment tools (see Methods) and resulting alignments were
compared to the simulated alignments produced by ROSE. Our objective was to test the
off-the-shelf performance of these tools over awide range of different divergences, so
each tool was run using default parameter settings. In addition, Bl ast Z and Chaos
were run using author suggested settings (Bl ast Z- A and Chaos- A), as described in
the Methods. We note that the output of Di Al i gn can be treated as both a global
alignment aswell asaloca alignment, so we analyzed both (Di Al i gn- Gand

Di Al'i gn-L). Alignments produced by each tool were scored for the overall coverage
and overall sensitivity for al regimes (A-D), and were also scored for constraint
coverage, constraint sensitivity, constraint specificity, and local constraint sensitivity in

the regimes with constrained blocks (C and D) (see Methods for details).

Coverage

Overal coverage was measured to understand the proportion of ungapped, orthologous
pairs of sitesin the simulated alignment that were aligned by local tools under various
evolutionary scenarios. The coverage of each tool under the four simulation regimesisa
decreasing function of divergence for local (but not global) tools (Figure 3). Inthe
absence of constrained blocks, local tools tend to align most or all of the sequences for
only small divergence distances (0.25-1.0 substitutions per site), but little or none of the
sequences for intermediate to large divergence distances (Figure 3A and 3B). [For

convenience, for the remainder of this report we shall refer to 0.25-1.0 substitutions per
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site as small distances, 1.25-3.0 substitutions per site as intermediate distances, and 4.0-
5.0 substitutions per site as large distances.] One exception is Chaos, which has
negligible coverage past 0.25 substitutions per site. In the presence of constrained
blocks, the coverage of local tools improves substantially at all but the most extreme
divergence distances. WABA, which wastypical of local tools in the absence of
constrained blocks, maintains high coverage out to more than twice the divergence
distance of the rest of the local toolsin the presence of constrained blocks. WABA aso
appearsto be relatively unaffected by indel evolution, while the other local tools show a
reduction in coverage of about 0.5 substitutions per site in regimes with indel evolution

(Figure 3A vs. 3B, 3C vs. 3D).

Sengitivity

Overall sensitivity was measured to understand the accuracy of each tool to align all
orthologous nucleotide sites under various evolutionary scenarios. The sensitivity of
each tool under the four simulation regimes is a decreasing function of divergence for
both local and global tools (Figure 4). It isimportant to note that the maximum
sensitivity atool can attain islimited by its coverage. Thus for most divergence
distances, global tools (which by definition have complete coverage) have greater
potential for high sensitivity relative to local tools, which have incomplete coverage (see
above, Figure 3). Nevertheless, with the exception of WABA, the sensitivity of local tools
tends to remain very close to the maximum set by their coverage. Thisimplies that
although local tools have diminishing coverage with divergence, the portion of the

sequence they do align is aligned quite accurately (see below). Despite the trend of high
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sensitivity in aligned regions for local tools, the sensitivity of the top global tools tends to
be as good as or better than the sensitivity for the top local tools (Figure 4). Thisis
particularly true for intermediate to high divergence distances in the absence of indel
evolution. In each of the four regimes, at least one global tool has a higher sensitivity
than the next best local tool for intermediate to high divergence distances. In the most
biologically relevant regime D, the sensitivity of the highest performing tools (such as
Lagan and Di Al i gn) plateaus over the range of 1.25-3.0 substitutions per site at higher
than 0.35, implying that sites other than those in constrained blocks are being accurately
aligned (Figure 4D). In contrast, in the absence of constraint but with indels (regime B),
the sensitivity of al alignment toolsis practically nil for divergences greater than 1

substitution per site (Figure 4B).

Coverage and sensitivity in constrained sequences

Alignment coverage and sensitivity across all orthologous sites are informative for
understanding the overall performance of atool, but, for many applications (such as
aligning characterized cis-regulatory elements), researchers may only be interested in
accurately aligning functionally constrained sites. To assess the ability of each tool to
align potentially functional portions of sequences we measured the coverage and
sensitivity only for orthologous nucleotide sites within constrained blocks (Figure 5).
Constraint coverage is better than overall coverage for local tools but the degree of
improvement varies considerably (Figure 5A and 5B). Bl ast Z, Bl ast Z- A and WABA
all have very similar overall and constraint coverage, suggesting little discrimination in

attempting to align constrained versus unconstrained sites. In contrast, Di Al i gn- L and
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Chaos- A have much improved constraint coverage compared with overall coverage,
suggesting a preferential alignment of constrained sites. For example in the presence of
indels, Di Al i gn- L accurately aligns 86% and 64% of constrained sequences at

divergences between 1.25 and 3.0 substitutions per site.

Constraint sensitivity of all toolsis much better than overall sensitivity but, as with
constraint coverage, the degree of improvement varies considerably across tools (Figure
5C and 5D). Similar to overall sensitivity, global tools tend to maintain the highest
sensitivity out to large divergence distances in the presence of constrained sites. It isof
note that in the presence of indel evolution (Figure 5D), constraint sensitivity of the best
performing global tools (aswell astheloca Di al i gn- L) closely parallels the decrease
in identity of constrained sites (Figure 2D), suggesting that they are attaining near-
maximal constraint sensitivity. Most tools show only moderate decreases in constraint
sensitivity in the presence of indel evolution but afew, liked ust al W Chaos- A, and
Bl ast Z have dramatic decreases in constraint sensitivity in the presence of indel

evolution.

Specificity to detect constrained sequences

Constraint coverage and constraint sensitivity reveal the ability of alignment tools to
detect and align all orthologous nucleotides sites within constrained blocks, but for some
purposes (like cis-regulatory element prediction) researchers may want to align only
constrained nucleotide sites and nothing else, even at the expense of missing some

functionally constrained sites. To evaluate the ability of each tool to provide high quality
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alignments of just potential functionally constrained sites, we measured their constraint
specificity and local constraint sensitivity. Asshown in Figure 6, constraint specificity is
an increasing function of divergence for most tools because unconstrained sequences
accumulate mismatches and indels more quickly than the constrained blocks and are thus
more likely to be gapped or left out of local alignments. Thisis particularly true for local
tools where decreasing coverage can increase constraint specificity, and less so for global
tools for which it is gap parameters that predominantly affect constraint specificity at
different divergence distances. Most tools have higher constraint specificity in the
presence of indel evolution, athough thistrend is less pronounced in the highest
specificity tools, Chaos and Di Al i gn- L. All local tools except WABA increase quickly
until they reach a constraint specificity of 0.8-0.9 at which point their constraint
specificity plateaus. In the presence of indel evolution, near-maximal constraint

specificity is achieved between 1.25 and 3.0 substitutions per site.

Local constraint sensitivity (Figure 6) is equivalent to constraint sensitivity (Figure 5) for
the global tools, but for the local toolsit differsin that it is a measure of their constraint
sensitivity just within the subsequencesthey align. For Bl ast Z, Bl ast Z- A, Chaos,
and Di Al'i gn- L, local constraint sensitivity is nearly maximal (1.0) with and without
indel evolution across all divergences studied. For Chaos- A and WABA, local constraint
sensitivity varies with divergence distance and is less than the other local tools. Thus
local tools can produce nearly perfect alignments within constraint blocks while

maintaining relatively high constraint specificity, though it is important to note that this
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may not be meaningful if the coverage of atool isextremely low (e.g. Bl ast Z,

Bl ast Z- A, Chaos).

Discussion

In this report we investigate the performance of eight pairwise genomic alignment tools
to align functional noncoding DNA such as that found in metazoan cis-regulatory
regions. To do so, we have used a biologically-informed simulation approach to
determine off-the-shelf performance over arange of divergence distances. This study
provides important information regarding the ability of genomic alignment tools to
identify and align constrained sequences in noncoding regions, which would not
otherwise be possible. We argue that a simulation study is necessary to achieve our goal
since large datasets of functionally annotated noncoding sequences are not available to
use as “gold standards’ of alignment accuracy. Likewise, datasets of large orthologous
genomic regions spanning a range of divergence distances are only recently becoming
available [31, 34]. Asiscommon in alignment benchmarking [4, 17, 35], we have
studied performance of alignment tools using default parameters since fundamental
differences in objective functions, scoring matrices, the type and values of parameters,

and algorithmic design prevent a systematic exploration of parameter space.

We have attempted to construct arealistic simulation of noncoding sequence evolution
and test alignment performance for species with genomic properties similar Drosophila.
Noncoding alignment assessment for mammalian and other species with large, repeat-

rich genomes would require modifications to our current simulation, such as the inclusion
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of ancestral repeats and lineage-specific transposition events. Moreover, as more
becomes known about the substitution process in noncoding regions (especially those
under weak primary sequence constraint), it will be important to implement more realistic
models such as context-dependent substitution [36-38]. It would be aso instructive to
assess alignment performance based on a simulation that decouples suppression of indel
rates from substitution rates, given the possibility that the spacing (but not the primary
sequence) between conserved noncoding segments may be constrained [31]. In addition,
though we have attempted to be systematic in our evaluation of tools, we unfortunately
cannot have included all available pairwise alignment tools. As new pairwise alignment
tools emerge and old tools are modified or brought to our attention, we will update our
results periodically on the web using the same set of simulated alignments presented here
[39]. Moreover, assessment of tools which take advantage of the phylogenetic
information and higher signal-to-noise inherent in multiple alignments will be an
essential extension to this work to provide amore general evaluation of strategies for

noncoding alignment.

From the standpoint of the most biologically relevant simulation regime studied here (D,
which includes indel evolution and interspersed blocks of constrained sequences), our
resultsindicate that global alignment tools have the highest sensitivity in genera to align
orthologous sites accurately in noncoding sequences, as well as blocks of constrained
sites (Figures 4D, 5D). Wefind that constraint sensitivity of the top global tools can be
quite high (>75%) and limited only by sequence identity in constrained sites at

intermediate divergence distances (1.25-3.0 substitutions per site), whereas overall
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sensitivity isrelatively low beyond such intermediate divergence distances. The
improved performance of global tools over loca toolsislargely a consequence of
incomplete coverage of both constrained and unconstrained sites in alignments produced
by local tools (Figure 3). The subset of sequences aligned by the highest performing
local tools, however, is accurately aligned and specifically corresponds to constrained
sites (Figure 6). In fact, most local tools can effectively discriminate between
constrained and unconstrained sites to greater than 80% specificity at intermediate
divergence distances while the constrained portions of their alignments are nearly
perfectly aligned at large divergence distances. Finally, when compared with regime C
(which excludesindel evolution but includes interspersed constrained blocks), it is clear
that our model of indel evolution affects alignment coverage, sensitivity and specificity,

but not enough to overturn these major trends.

These results have important implications for the analysis of functional noncoding
sequences. Firgt, if aresearcher’s goa isto aign al constrained sites in a noncoding
region, then aglobal tool like Lagan will reliably produce the best results, but will
require post-processing to identify constrained sequences [40, 41]. Conversdly, if one's
goal isto align only constrained blocks in a noncoding region, then alocal tool like
Chaos will reliably produce the best results, provided that complete recovery of al
constrained sequencesis not required. The distinct virtues of both global and local tools
are currently incorporated in the output of only one alignment tool, Di Al i gn. For this
reason, use of the global parse of Di Al i gn (Di Al i gn- G can provide high coverage

and sengitivity across entire noncoding regions, while use of the local parseof Di Al i gn
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(Di Al'i gn- L) will specifically provide highly accurate alignments of blocks of
constrained sites. In light of these results, we recommend the further devel opment of
global alignment tools that also output alocal parse of high confidence local aignments
contained within, which should be possible since local anchors are often used in the

construction of the global aignment (e.g. [7, §]).

Our results also indicate that for species with structural and evolutionary constraints on
noncoding sequences such as those found in Drosophila, Di Al i gn can produce
alignments with high coverage and sensitivity, as well as high specificity to detect
constrained sitesin the range of 1.25-3.0 substitutions per site. Since the divergence
between D. melanogaster vs. D. pseudoobscura and between C. elegansvs. C. briggsae
falls within this range, we suggest that the use of Di Al i gn for detecting functionally
constrained noncoding sequences will prove successful in these taxa on a genomic scale.
In contrast, our results also indicate that species pairs such as H. sapiens and. M.
musculus may not be sufficiently diverged for a single pairwise comparison to provide
the needed resolution to detect functionally constrained noncoding sequences, though
differences in genome organization and evolution between flies and mammals require a
more thorough evaluation of this claim. This conclusion, however, supports results based
on Poisson modelling of point substitution that approximately 3 substitutions per site
would be needed to detect functional constrained sites reliably in mammalian noncoding

DNA [42].
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Finally, the results presented here also imply that biological and technical conditions
exist with which to study with accuracy the evolutionary events underlying the process of
cis-regulatory evolution in fliesand worms. Current evolutionary models of cis-
regulatory sequence divergence posit the gain and loss of transcription factor binding
sites, even under constant functional constraints [43, 44]. However, the absence of
alignable binding sites in comparisons of divergent sequences may result from
inaccuracies in alignment as well as the bona fide loss of transcription factor binding
sites. We suggest that alignments of noncoding sequences using toolssuch asDi Al i gn
in the range of 1.25-3.0 substitutions per site are of sufficient accuracy to measure
binding site loss among divergent species pairs, such as the high levels recently reported

in the genus Drosophila [45, 46].

Conclusions

Our study demonstrates that recently developed alignment tools have the potential to
produce biologically meaningful alignments of functional noncoding DNA on a genome
scale. Continued development of alignment algorithms in conjunction with parameter
optimization and continued benchmarking will be necessary to provide the highest
quality genomic alignments under the wide diversity of genomic and evolutionary

scenarios to be studied.
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Methods

Modelling input sequences for the simulation of Drosophila noncoding DNA.

To generate biologically relevant input sequences for our simulation, we estimated
properties of noncoding sequences in the genome sequences of the fruitfly, D.
melanogaster. First we extracted all noncoding regions from the Release 3 D.
melanogaster genomic sequences based on annotations in the Gadfly database [19, 20,
47]. Thiswas accomplished by masking all DNA corresponding to coding exons,
producing inter-coding-exon intervals. Subsequent to extracting noncoding regions,
transposable elements were masked using annotations in Gadfly to create “ pre-
integration” noncoding sequences. In our analysis, we chose to treat al noncoding
sequences (intergenic, intronic, untranslated region) together since many noncoding
sequences cannot be unambiguously categorized because of aternative splicing or
alternative promoter usage. Moreover, previous results revealed that similar evolutionary
constraints act on intergenic and intronic sequencesin Drosophila [25]. Summary
statistics of noncoding sequence lengths were calculated using the R statistical package

(Figure 1) [48].

The probabilistic dependence of adjacent basesin D. melanogaster noncoding sequences
was assessed by Markov chain analysisin order to create an accurate model of random
noncoding sequences [49]. TE-masked noncoding sequences were concatenated, and n-
mers of size 1 to 10 were counted. Counts of reverse complementing n-mers were

averaged, and used to estimate frequencies of each n-mer [50]. Based on these counts
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and frequencies, we determined the likelihood of Markov chains of orders 1 through 9
describing Drosophila noncoding sequences, and evaluated the likelihood of each
Markov chain using the Bayesian information criterion [49, 51]. Thisanaysisreveded
that D. melanogaster noncoding sequences are best modeled by a 7'"-order Markov chain
(data not shown). We therefore created the ancestral input sequences for our evolution
simulations using a 7""-order Markov chain. We note that because our evol utionary
simulation models bases independently (see below), the higher order structure of these
ancestral input sequences was not maintained in the more divergent derived output
sequences. Nevertheless, sequences generated by a 0™-order Markov chain gave
gualitatively and quantitatively similar ssmulation and alignment results, with correlation
among performance measures for the 0™-order and 7""-order generated sequences

exceeding an r? of 0.97 (data not shown).

Divergence estimates in flies, worms and mammals.

Estimates of silent site divergence (Ks) between H. sapiens vs. M. musculus, C. elegans
vs. C. briggsae, and D. melanogaster vs. D. pseudoobscura were obtained using the
yn00 method in PAML (version 3.13) [52, 53]. The mean and median of Kswere
calculated for 29 fly, 193 worm, and 153 mammalian coding sequence alignments taken

from references [31], [28] and [26], respectively.

Simulating noncoding sequence divergence.

Noncoding sequence evolution was simulated using amodified version of the sequence

simulation program ROSE [9]. In general, in the absence of |arge datasets of noncoding
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sequences from closely related Drosophila species, we have taken estimates of noncoding
evolution from previous results reported in the literature. Beginning with ancestral
sequences, evolution occurred on two descendent branches of equal length under the
HKY model of point substitution [54], with atransition/transversion bias of 2 to reflect
the nucleotide and transition biases observed in Drosophila noncoding sequences [25, 55,
56]. The substitution rate was set to 0.01 such that a branch length unit was on average
0.01 substitutions per site. Total branch lengths spanned a range of divergence times
from 0.25 to 5.0 substitutions per site. Insertion/deletion evolution was based on the
length distribution of polymorphic indels estimated in [57], and occurred at a 10-fold

lower rate than point substitution, approximating relative rates estimated in [22, 23].

To model the evolution of constrained blocks in noncoding sequences a modification of
the ROSE sequence simulation program was devel oped to map constraints on ancestral
sequences onto derived sequences (available for download as ROSE version 1.3 from
[58]). Constraints on noncoding sequences were modelled as short blocks of highly
conserved sequences typical of cis-regulatory sequences, and follow alognormal
distribution with parameters estimated in [25]. On average, interspersed blocks of
constrained sites accounted for 20% of the sites in ancestral sequences, a conservative
estimate of constraint in Drosophila noncoding DNA [25]. Parameters used in our

simulations are summarized in Table 1.

Estimation of evolutionary distance for smulated alignments was performed using the

F84 model of sequence evolution inthe DnaDi st program of the PHYLI P package [59]
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with atransition:transversion ratio of 1.0 (note that atransition:transversion ratio of 1.0 in
PHYLI P isequivalent to atransition/transversion bias of 2 in ROSE, see discussion in
[53]). Summary statistics for the simulations were calcul ated using the R statistical

package (Figure 2) [48].

Tools for aligning noncoding DNA.

The alignment tools tested in this study were chosen based on the criteriathat they are (1)
publicly available, (2) run in batch mode from the command line and are able to produce
(3) strictly co-linear, (4) error-free, pairwise genomic alignments of sequences (5) up to
10Kbinlength. Toolslike BBA[60] (5), Bl 2seq [61] (3), DBA[62] (4), MUMrer [63]
(3), Onen [64] (2) and SSEARCH [65] (3) were not evaluated since they do not satisfy

one of these criteria. We now briefly describe the tools that we tested.

Avi d [7] isapairwise globa aignment tool whose genera strategy for aligning two
sequences isto anchor and align iteratively. A set of maximal (but not necessarily
unigue) matches between the sequences is constructed using a suffix tree. Dynamic
programming is used to order and orient the longest matches, which are then fixed. For
each subsequence remaining between the fixed matches, the process is repeated until
every baseisaligned. When sequences are short and the matches make up less than half

of the total sequence, the program defaults to the Needleman-Wunsch agorithm [66].

The Chaos/Lagan [8] suite of tools consists of a pairwise local alignment tool, Chaos,

and aglobal alignment tool, Lagan. Chaos starts by finding all words between the two
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sequences of a specified length and a specified maximum number of mismatches. These
words are then chained together if they are close together in both sequences. These
maximal chains are then scored and al chains that are above a specified threshold are
returned. Lagan starts by running Chaos with conservative parameter settings and then
finds the optimal path through the maximal chains using dynamic programming. Lagan
then recursively calls Chaos with increasingly more permissive parameters on the
regions between each maximal chain in the optimal path. When the recursion has created
adense map of maximal chains that have been ordered with dynamic programming,
Lagan runs the Needleman-Wunsch algorithm on the whole length of both sequences
but puts close bounds around the maximal chains to provide the final global alignment.
Chaos wasrun on default parameters as well as using parameters suggested by the
authors: word length = 7, number of degeneracies = 1, score cut-off = 20 and extension

mode on.

Bl ast Z[67] isapairwiseloca alignment tool that is based on the gapped BLAST
algorithm that has been redesigned for the alignment of long genomic sequences.

Bl ast Z first removes lineage-specific interspersed repeats from each sequence, then
searches for short near-perfect matches between the two sequences. Each matchis
extended first using gap-free dynamic programming and if it scores above a specified
threshold it will be extended using dynamic programming with gaps; extended matches
that score above a specified threshold are then kept. Part of the unique implementation of
Bl ast Zisthat it can be forced to return alignments that are both unique within each

sequence as well as collinear with respect to each other. To satisfy our strict collinear
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requirement, we ran Bl ast Z with both of these options. Bl ast z was also run using the

author’s suggestion of lowering the score cut-off (k) to 2000 (Bl ast Z- A).

Di Ali gn (v.2.1) [68] isasegment-to-segment alignment algorithm. Like the BLAST
algorithms, Di Al i gn looks for short ungapped segments that have a similarity that
deviates from what would be expected by random chance, keeping segments with a score
above a certain threshold. These high scoring segments are then aligned into a collinear
global alignment using a dynamic programming algorithm. Di Al i gn produces a global
alignment but distinguishes high confidence columns of an aignment from low
confidence columns. Weused Di Al i gn asboth agloba (Di Al i gn- G and alocal

(Di Al'i gn- L) aignment tool.

Cl ust al W(v. 1.8) [69] was used on default settings. Cl ust al Wisa progressive
multiple alignment tool that reduces to the Needleman-Wunsch agorithm in the pair-wise
case with default parameters of a match score of 1.9, mismatch penalty of 0, a gap open

penalty of 10 and a gap extension penalty of 0.1.

The second implementation of the Needleman-Wunsch algorithm used in this study is the
needl e program in the EMBOSS suite of tools[70]. need| e was used with default
parameter settings of a match score of 5, a mismatch penalty of 4, a gap open penalty of

10 and a gap extension penalty of 0.5.

Thefinal tool tested, WABA [71], isathree-tier alignment algorithm. Thefirst tier

partitions the first sequence into overlapping windows of 2 Kb and then defines a synteny
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map of high scoring 2 Kb windows of the first sequence onto the second sequence. The
second tier then carefully aligns syntenic regions using a seven-state, pair Hidden
Markov Model that includes separate query and database insertion/del etion states, high
and low noncoding conservation states, as well as three coding states (one for each
position in acodon). Thefinal tier then attempts to assemble individual aignments

together into amore global alignment.

Alignment performance measures.

The performance of alignment tools was assessed using six basic measures. overall
coverage, overall sensitivity, constraint coverage, constraint sensitivity, constraint
specificity and local constraint sensitivity. Overall coverage and overall sensitivity were
measured for al four evolutionary regimes (A-D) while the constraint measures were
only measured in the two regimes that included constrained blocks (C, D). Alignments
produced by each alignment tool were parsed to generate the statistics, which were then

used to calculate each performance measure.

Each site in an alignment produced by atool (asite being abase in one strand of a
column of an alignment) can have two simulated alignment states, two constraint states,
three tool alignment states, and two conditional tool alignment states. The two simulated
alignment states are “homolog” (h), ungapped sites in the simulated alignments, and “no
homolog” (nh), gapped sites in the simulated alignments. Simulations without indel
evolution have only homolog sites since there are no gaps in the simulated alignments.

The two constraint states are “ constrained” (c), sites in constraint blocks, and
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“unconstrained” (u), sites not in constrained blocks. The three tool alignment states are
“aigned” (a), sites aligned in the tool alignment, “gapped” (g), sites gapped in the tool
alignment, and “not aligned” (na), sites not included in alocal tool alignment. The two
conditional tool alignment states are “aligned correctly” (ac), sites aigned to the same
site in both the tool and simulated alignments, and “aigned incorrectly” (a), sites aligned
to different sitesin the tool and simulated alignments. There are fourteen possible
combinations of these states (e.g. homolog constrained aligned correctly, h_c_ac), giving
us fourteen statistics to calculate for each estimated alignment. Counts for each statistic

were used to calcul ate the following measures:

Overall coverageisthe fraction of ungapped sites in asimulated alignment that are
included in atool alignment. Overall Coverage=(h . c ac+h ca+h c g+h u ac+
hua+hug/(hca+hca+hcg+hcna+thua+hua+hug+

h_u na)

Overall sengitivity isthe fraction of ungapped sitesin asimulated alignment that are
aligned to the correct base in atool aignment. Overall Sensitivity =(h_c ac+h u ac)/

(hcac+thca+hcg+hcna+hua+hua+hug+huna

Constraint coverage is the fraction of ungapped constrained sites in a simulated alignment

that are included in atool alignment. Constraint Coverage=(h_ c ac+h c a+h c g)/

(hcac+hca+hcg+hc na
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Constraint sensitivity is the fraction of ungapped constrained sitesin a simulated
alignment that are aligned to the correct base in atool alignment. Constraint Sensitivity =

(hca)/(hca+hca+hcg+hcna

Constraint specificity is the fraction of unconstrained sitesin a simulated alignment that
are gapped or not included in atool alignment. Constraint Specificity =(h_ u g+h u na
+nh_ug+nhunag/(hua+hua+hug+huna+nhua+nhug+

nh_u_na)

Local constraint sensitivity isthe fraction of sites that are both, contained in atool
alignment and are ungapped constrained sites in a simulated alignment, that are aligned to
the correct basein the tool aignment. Loca Constraint Sensitivity =(h ¢ ac)/ (h ¢ ac

+hca+hcg)

For each of these six measures, a mean and standard error of the mean were cal cul ated

for up to 1000 replicates (loca tools do not always return an alignment and replicates

which produced no alignment were not counted toward the mean) using R.
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Figures

Figure 1 - Distribution of noncoding sequence lengths in the D. melanogaster
Release 3 genome sequence.

Sequences between coding exons were extracted from the D. melanogaster Release 3
euchromatic genome sequence and annotations, and transposable element sequences were
subsequently subtracted to produce the “pre-integration” distribution of noncoding

sequence lengths (see Methods for details).

Figure 2 - Simulation statistics

Pairwise alignments were simulated for arange of divergence distances, using a modified
version of the ROSE simulation platform under four different regimes: A) without indel
evolution and without constrained blocks; B) with indel evolution and without
constrained blocks; C) without indel evolution and with constrained blocks; and D) with
indel evolution without constrained blocks. For each divergence distance, 1,000
replicates were used to calcul ate the mean and standard error for the following statistics:
estimated overall divergence (black boxes), estimated divergence in constrained blocks of
sites (grey circles), estimated divergence in unconstrained blocks of sites (brown
triangles), identity (red crosses), identity in constrained blocks (yellow x’s), identity in
unconstrained blocks (green diamonds), fraction of ancestral sequence remaining in
derived sequences (green triangle), and fraction of constraint (light blue checked boxes).

Note that the divergence scale in this and following figures is discontinuous.
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Figure 3 - Overall alignment coverage

For each divergence distance and each tool, 1,000 replicates were used to calculate the
mean and standard error of overall alignment coverage, which was defined as the fraction
of ungapped, orthologous pairs of sitesin the ssmulated alignment that were included in
an alignment produced by atool (see Methods for details). A) overall coverage without
constrained blocks and without insertion/del etion evolution; B) overall coverage without
constrained blocks and with insertion/del etion evolution; C) overall coverage with
constrained blocks and without insertion/del etion evolution; D) overall coverage with

constrained blocks and with insertion/del etion evol ution.

Figure 4 - Overall alignment sensitivity

For each divergence distance and each tool, 1,000 replicates were used to calculate the
mean and standard error of overall alignment sensitivity, which was defined as the
fraction of ungapped, orthologous pairs of sitesin the simulated alignment that were
aligned correctly in an alignment produced by atool (see Methods for details). A) overall
sensitivity without constrained blocks and without insertion/del etion evolution; B) overall
sensitivity without constrained blocks and with insertion/deletion evolution; C) overall
sensitivity with constrained blocks and without insertion/deletion evolution; D) overall

sensitivity with constrained blocks and with insertion/deletion evolution.
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Figure 5 - Constraint coverage and sensitivity

For each divergence distance and each tool, 1,000 replicates were used to calculate the
mean and standard error of constraint coverage and constraint sensitivity, which were
defined as the coverage and sensitivity within interspersed constrained blocks (see
Methods for details). A) constraint coverage without insertion/del etion evolution; B)
constraint coverage with insertion/del etion evolution; C) constraint sensitivity without

insertion/deletion evolution; D) constraint sensitivity with insertion/del etion evolution.

Figure 6 - Constraint specificity and local constraint sensitivity

For each divergence distance and each tool, 1,000 replicates were used to calculate a
mean and standard error of constraint specificity and local constraint sensitivity.
Constraint specificity was defined as the fraction of unconstrained sitesin the simulated
alignment that were unaligned or gapped in an alignment produced by atool. Local
constraint specificity was defined the constraint sensitivity for just the sites contained in
an alignment produced by atool (see Methods for details). A) constraint specificity
without insertion/del etion evolution; B) constraint specificity with insertion/deletion
evolution; C) local constraint sensitivity without insertion/del etion evolution; D) local

constraint sensitivity with insertion/deletion evolution.

38



Tables

Table 1 — Summary of parameters

used in simulations of noncoding sequence

evolution.

Parameter Value Source Refs.

Sequence length 10 Kb D. mel this work (Fig. 1)

AT : GC 60 : 40 Drosophila spp. this work, [31, 55]

Transition / Transversion Bias 2 Drosophila spp. [25, 56]
Substitution model HKY85 - [54]
Point substitutions : Indels 10:1 Drosophila spp. [22, 23, 25]

Indel spectrum - D.mel [57]
Median constrained block length 18 bp D.mel vs. D.vir [25]
Mean density of constrained blocks 0.2 D.mel vs. D.vir [25]
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Figure 5

Constraint Coverage

Constraint Sensitivity
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Figure 6

Constraint Specificity

Local Constraint Sensitivity
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